PostgreSQL Memory
The @voltagent/postgres
package provides a PostgreSQLMemoryAdapter
storage adapter for the Memory
class, using PostgreSQL for persistent conversation storage.
This is ideal for production applications requiring enterprise-grade database storage, complex queries, or integration with existing PostgreSQL infrastructure.
Setup
Install Package
First, install the necessary packages:
- npm
- yarn
- pnpm
npm install @voltagent/postgres
yarn add @voltagent/postgres
pnpm add @voltagent/postgres
Database Requirements
You need a PostgreSQL server (version 12 or higher recommended). The provider automatically creates all necessary tables and indexes when initialized, so no manual SQL setup is required.
Credentials
You'll need your PostgreSQL connection details:
- Host: Your PostgreSQL server hostname
- Port: Usually 5432
- Database: Database name
- User: Database username
- Password: Database password
Store these credentials securely, typically as environment variables or use a connection string format.
Configuration
Import PostgreSQLMemoryAdapter
and initialize it with your credentials, then pass it to new Memory({ storage: ... })
:
import { Agent, Memory } from "@voltagent/core";
import { PostgreSQLMemoryAdapter } from "@voltagent/postgres";
import { openai } from "@ai-sdk/openai";
// Using connection string (recommended)
const storage = new PostgreSQLMemoryAdapter({
connection: process.env.DATABASE_URL || "postgresql://postgres:password@localhost:5432/mydb",
// Optional: Adjust connection pool size
maxConnections: 10,
// Optional: Specify a custom base table name prefix
tablePrefix: "voltagent_memory", // Defaults to 'voltagent_memory'
// Optional: Storage limit (max number of messages per user/conversation)
storageLimit: 100, // Defaults to 100
});
// Alternative: Using connection object
const storage = new PostgreSQLMemoryAdapter({
connection: {
host: process.env.DB_HOST || "localhost",
port: parseInt(process.env.DB_PORT || "5432"),
database: process.env.DB_NAME || "mydb",
user: process.env.DB_USER || "postgres",
password: process.env.DB_PASSWORD,
ssl: process.env.NODE_ENV === "production", // Enable SSL for production
},
maxConnections: 10,
tablePrefix: "voltagent_memory",
storageLimit: 100,
});
const agent = new Agent({
name: "PostgreSQL Memory Agent",
instructions: "An agent using PostgreSQL for memory.",
model: openai("gpt-4o"),
memory: new Memory({ storage }),
});
Configuration Options:
connection
(string or object, required): Database connection details.- Connection string:
"postgresql://user:password@host:port/database"
- Connection object:
{ host, port, database, user, password, ssl }
- Connection string:
maxConnections
(number, optional): Maximum connections in the pool. Defaults to10
.tablePrefix
(string, optional): Prefix for database table names. Defaults tovoltagent_memory
.storageLimit
(number, optional): Maximum messages to retain per conversation. Defaults to100
.debug
(boolean, optional): Enable debug logging. Defaults tofalse
.
Conversation Management
Get User's Conversations
// Get recent conversations for a user
const conversations = await storage.getConversationsByUserId("user-123", {
limit: 50,
orderBy: "updated_at",
orderDirection: "DESC",
});
// Display in sidebar like ChatGPT
conversations.forEach((conv) => {
console.log(`${conv.title} - ${conv.updatedAt}`);
});
Pagination and Sorting
// Recent chats with sorting
const recentChats = await storage.queryConversations({
userId: "user-123",
limit: 20,
orderBy: "updated_at",
orderDirection: "DESC",
});
// Offset-based pagination
const page1 = await storage.queryConversations({ userId: "user-123", limit: 10, offset: 0 });
const page2 = await storage.queryConversations({ userId: "user-123", limit: 10, offset: 10 });
Querying Conversations
The PostgreSQL storage provides powerful conversation querying capabilities with filtering, pagination, and sorting options:
// Query with multiple filters
const workConversations = await storage.queryConversations({
userId: "user-123",
resourceId: "work-agent",
limit: 25,
offset: 0,
orderBy: "created_at",
orderDirection: "DESC",
});
// Get all conversations for a user
const userConversations = await storage.queryConversations({
userId: "user-123",
limit: 50,
});
// Get conversations for a specific resource
const resourceConversations = await storage.queryConversations({
resourceId: "chatbot-v1",
limit: 100,
orderBy: "updated_at",
});
// Admin view - get all conversations
const allConversations = await storage.queryConversations({
limit: 200,
orderBy: "created_at",
orderDirection: "ASC",
});
Query Options:
userId
(optional): Filter conversations by specific userresourceId
(optional): Filter conversations by specific resourcelimit
(optional): Maximum number of conversations to return (default: 50)offset
(optional): Number of conversations to skip for pagination (default: 0)orderBy
(optional): Field to sort by: 'created_at', 'updated_at', or 'title' (default: 'updated_at')orderDirection
(optional): Sort direction: 'ASC' or 'DESC' (default: 'DESC')
Getting Conversation Messages
Retrieve messages for a specific conversation:
// Get recent messages (chronological order)
const messages = await storage.getMessages("user-123", "conversation-456", { limit: 50 });
// Time-based pagination
const older = await storage.getMessages("user-123", "conversation-456", {
before: new Date("2024-01-01T00:00:00Z"),
limit: 50,
});
Message Query Options:
limit
(optional): Maximum number of messages to return (default: 100)before
(optional): Only messages created before this dateafter
(optional): Only messages created after this dateroles
(optional): Filter by roles, e.g.,["user", "assistant"]
Messages are returned in chronological order (oldest first) for natural conversation flow.
Automatic Table Creation
PostgreSQLMemoryAdapter
automatically creates the necessary tables (with your tablePrefix
) and indexes if they don't already exist:
${tablePrefix}_users
${tablePrefix}_conversations
${tablePrefix}_messages
${tablePrefix}_workflow_states
This simplifies setup for both development and production.
Production Considerations
For production applications, consider:
- SSL Connections: Enable SSL by setting
ssl: true
in your connection configuration. - Connection Pooling: Adjust
maxConnections
based on your application's concurrent usage. - Environment Variables: Store database credentials securely using environment variables.
- Database Backups: Implement regular backup strategies for your PostgreSQL database.
Use Cases
- Production Applications: Enterprise-grade applications requiring robust, scalable database storage.
- Existing PostgreSQL Infrastructure: Applications already using PostgreSQL for other data.
- Complex Queries: Scenarios requiring advanced SQL capabilities or data analytics.
- High Availability: Applications requiring database replication and failover capabilities.
- Team Collaboration: Multi-user applications where conversation data needs to be shared or analyzed.
Error Handling
try {
await storage.addMessage(message, userId, conversationId);
} catch (error) {
if (error.message.includes("foreign key constraint")) {
console.error("Conversation does not exist");
} else {
console.error("Database error:", error);
}
}
Working Memory
PostgreSQLMemoryAdapter
implements working memory operations used by Memory
:
- Conversation-scoped working memory is stored under
conversations.metadata.workingMemory
. - User-scoped working memory is stored in the
${tablePrefix}_users
tablemetadata.workingMemory
field.
Enable via Memory({ workingMemory: { enabled: true, template | schema, scope } })
. See: Working Memory.
Programmatic APIs (via Memory
):
getWorkingMemory({ conversationId?, userId? })
updateWorkingMemory({ conversationId?, userId?, content })
clearWorkingMemory({ conversationId?, userId? })
Semantic Search (Embeddings + Vectors)
Vector search is configured on Memory
independently of the storage adapter. To enable semantic retrieval with PostgreSQL storage, attach an embedding adapter and a vector adapter (e.g., in-memory for development):
import { Memory, AiSdkEmbeddingAdapter, InMemoryVectorAdapter } from "@voltagent/core";
import { PostgreSQLMemoryAdapter } from "@voltagent/postgres";
import { openai } from "@ai-sdk/openai";
const memory = new Memory({
storage: new PostgreSQLMemoryAdapter({ connection: process.env.DATABASE_URL! }),
embedding: new AiSdkEmbeddingAdapter(openai.embedding("text-embedding-3-small")),
vector: new InMemoryVectorAdapter(),
});
Use with agent calls by passing semanticMemory
options. See: Semantic Search.